Technology in medicine has taken a new dimension. With regards to testing for presence of diseases and other anomalies, Elisa technology has taken over. The cardiac Elisa kits have been particularly so good. They are devices capable of working with the hearts of almost all animals in the world to establish any defects on it.
This process depends is an enzyme dependent process that uses color change as an indicator of reactions in reagents. The process works through an enzyme immunoassay which combines with antigens producing the subsequent color change. This test is capable of establishing the presence of both antibodies and antigens.
This test can also be used in detecting foreign bodies that exist in low concentrations. Heart problems can, therefore, be identified before they become chronic. The patient is advantaged; he will spend less money fighting a developing problem than he would have spent on a chronic one. This is because it is cheaper treating a disease while still in its early stages than when it has developed into a complex illness.
Proper working of this equipment means it is sensitive to reactions, gives accurate results, and is capable of making many detailed readings at a time. When a tool is sensitive, it can exhibit any slight change resulting from the reaction between samples and reagents. Its accuracy ensures that results obtained are free of errors, and hence, believable. They are also manufactured to work on specific problems.
It is also important that the instruments are made in a way that makes them stable. To attain stability, one must cut down on the rate loss of these activities. This is possible through proper storage. Stability can also be achieved through minimizing the effects of the surrounding on the set-up. This means temperature, humidity and pressure have to agree with the standard lab requirements. There should be somebody to control incubator temperatures. If only one person is allowed to work on the research from beginning to end, it will be easy to achieve stability.
Before the experiment is done, the researcher must prepare all the standards, samples and reagents. Some samples are then added to each well and incubated for approximately two hours. Having done this, the researcher should then aspire the previous mixture before adding a small amount of the reagent. He/she must then incubate the mixture for one hour. The substances are once again aspired and washed three times before a solution of the substrate is added and then incubated for 20-25 minutes. Lastly, a stopping solution is added to end the reaction.
The enzyme sandwich principle is applied in this experiment. Plates on the kits are coated in advance with specific antibodies for the problem under investigation. Standards or samples are then appropriately added to the plates. They normally contain antibodies which are specific to certain defects. Lastly, Avidin conjugate is put on each plate and then incubated.
After putting substrate solutions together with other reagents, only the micro-wells will have Tropin I type three. A color change will then be exhibited, and a stopper solution is added. The change in color is then measured using wavelengths.
This process depends is an enzyme dependent process that uses color change as an indicator of reactions in reagents. The process works through an enzyme immunoassay which combines with antigens producing the subsequent color change. This test is capable of establishing the presence of both antibodies and antigens.
This test can also be used in detecting foreign bodies that exist in low concentrations. Heart problems can, therefore, be identified before they become chronic. The patient is advantaged; he will spend less money fighting a developing problem than he would have spent on a chronic one. This is because it is cheaper treating a disease while still in its early stages than when it has developed into a complex illness.
Proper working of this equipment means it is sensitive to reactions, gives accurate results, and is capable of making many detailed readings at a time. When a tool is sensitive, it can exhibit any slight change resulting from the reaction between samples and reagents. Its accuracy ensures that results obtained are free of errors, and hence, believable. They are also manufactured to work on specific problems.
It is also important that the instruments are made in a way that makes them stable. To attain stability, one must cut down on the rate loss of these activities. This is possible through proper storage. Stability can also be achieved through minimizing the effects of the surrounding on the set-up. This means temperature, humidity and pressure have to agree with the standard lab requirements. There should be somebody to control incubator temperatures. If only one person is allowed to work on the research from beginning to end, it will be easy to achieve stability.
Before the experiment is done, the researcher must prepare all the standards, samples and reagents. Some samples are then added to each well and incubated for approximately two hours. Having done this, the researcher should then aspire the previous mixture before adding a small amount of the reagent. He/she must then incubate the mixture for one hour. The substances are once again aspired and washed three times before a solution of the substrate is added and then incubated for 20-25 minutes. Lastly, a stopping solution is added to end the reaction.
The enzyme sandwich principle is applied in this experiment. Plates on the kits are coated in advance with specific antibodies for the problem under investigation. Standards or samples are then appropriately added to the plates. They normally contain antibodies which are specific to certain defects. Lastly, Avidin conjugate is put on each plate and then incubated.
After putting substrate solutions together with other reagents, only the micro-wells will have Tropin I type three. A color change will then be exhibited, and a stopper solution is added. The change in color is then measured using wavelengths.
No comments :
Post a Comment